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Effect of long-range interactions in the conserved Kardar-Parisi-Zhang equation
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The conserved Kardar-Parisi-Zhang equation in the presence of long-range nonlinear interactions is studied
by the dynamic renormalization-group method. The long-range effect produces new fixed points with continu-
ously varying exponents and gives distinct phase transitions, depending on both the long-range interaction
strength and the substrate dimensiond. The long-range interaction makes the surface width less rough than that
of the short-range interaction. In particular, the surface becomes a smooth one with a negative roughness
exponent at the physical dimensiond52. @S1063-651X~98!02011-X#

PACS number~s!: 05.40.1j, 68.35.Fx, 05.70.Ln
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For the past decade the kinetic roughening of surfaces
attracted much interest@1#. The recent studies concentrate
measuring the scaling exponents that characterize
asymptotic behavior of the surface roughness on a la
length scale and in a long time limit and finding the co
tinuum equations. The problem of a rough surface not onl
of practical importance in crystal growth, but also is relat
to the nonequilibrium statistical physics. Many compu
simulations and theoretical approaches have been applie
the studies of the Kardar-Parisi-Zhang~KPZ! @2# equation
and discrete molecular-beam-epitaxy growth models w
various kinds of noise@3–7#. Among them, the Eden mode
@8#, ballistic deposition@9#, and the restricted solid-on-soli
growth model @10# have been identified as a universali
class corresponding to the KPZ equation for the coa
grained height variableh(r ,t), which describes the surfac
as a function of coordinater and timet. The KPZ equation
has a nonlinear term of short range describing the lat
growth. However, there is poor agreement between the K
equation and the experimental data.

Recently, Mukherji and Bhattacharjee@11# proposed a
phenomenological equation in the presence of long-range
teractions to describe the kinetic roughening of the surf
growth. The long-range effect of the nonlinear term in t
KPZ equation is introduced by coupling the gradients at t
different points. The roughness of the surface is found
depend on the long-range nature and several distinct p
transitions are observed. The long-range interactions de
ing slower than 1/r d (d is the substrate dimension! makes
the KPZ fixed point with the short-range interaction be u
stable. The surface then has the long-range roughness
different exponents depending on the power law of the lo
range interactions. Other interactions decaying faster t
1/r d are suppressed by the local interaction yielding the
dinary KPZ universality class.

In the kinetic roughening problems, the universality cla
of the dynamic systems depends on the symmetry of
order parameter, the dimensionality of space, and the con
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vation of the surface currents. Therefore, it would be int
esting to examine how the long-range interaction in the c
served growth equation affects the roughness of the surf
Lauritsen@12# introduced a growth kernel equation~GKE!
with a generalized conservation law described by an inte
kernel. It describes the nonlocal interactions with the K
equation. Here we extend the phenomenological equatio
Mukherji and Bhattacharjee to the conserved growth eq
tion

]h~r ,t !

]t
52K¹4h~r ,t !1hc~r ,t !2

1

2
¹2E dr 8q~r 8!

3“h~r1r 8,t !•“h~r2r 8,t !, ~1!

whereh(r ,t), assumed to be a single-valued function of p
sition r , describes the height of the surface. The parameteK
is a constant andhc is a conserved random noise of ze
mean with^hc(r ,t)hc(r 8,t8)&522Dc¹

2d(r2r 8)d(t2t8).
Since the right-hand side of Eq.~1! can be written as the
divergence of a current, the total volume under the surfac
conserved. The kernelq(r ) includes long-range part that i
connected to the underlying interactions. As in Ref.@11#, we
takeq(r ) to have a short-range~SR! partl0d(r ) and a long-
range~LR! part ;r r2d or more precisely, in Fourier space
q(k)5l01lrk2r. Both Eq.~1! and the GKE have the con
servation law and the long-range interaction in common. T
GKE contains the KPZ equation with the generalized kern
However, Eq.~1! has the nonlinear term with the long-rang
interaction as coupling the gradients at two different poin
It takes into account with both the short-range part and
long-range part.

The surface widthW(L,t) can be described by the dy
namical scaling formW(L,t)5LxF(t/Lz), whereL, x, z,
and F are the system size, the roughness exponent, the
namic exponent, and the scaling function, respectively.
l05lr50, it becomes a linear equation evolving with th
conservative surface diffusion, where the roughness ex
nentx is (22d)/2 and the dynamic exponentz54. For the
physical dimensiond52, x50; thus the surface width is
logarithmically rough as a function of system sizeL. Above
5467 © 1998 The American Physical Society
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two dimensions the linear equation with the conservat
noise produces a negative roughness exponent, implyin
smooth surface@13#. For lr50 andl0Þ0, Eq.~1! becomes
the conserved KPZ equation with a conservative no
@called the Sun-Guo-Grant~SGG! equation@7,14##, where
the average height remains constant. For this local conse
growth equation, the dynamic renormalization-group~RG!
calculation showsx5(22d)/3 and z5(101d)/3 @7#. For
d>2, the nonlinear term is irrelevant and then the expone
are given by the linear theory with bothl0 andlr being zero
in Eq. ~1!. Here we show that a long-range part (lrÞ0)
gives a new fixed point with continuously varying expone
and thus yields distinct phase transitions depending on b
the parameterr of the long-range interactions and the su
strate dimensiond. This nonlocallr term with positiver
makes the surface less rough than in the case oflr50. In
particular, at the physical dimensiond52, the surface be-
comes a smooth phase with a negative roughness expo
rather than a logarithmically rough phase as in the SGG c

Under the change of scale, the parameters in Eq.~1! make
the changes K→bz24K, Dc→bz22x2d22Dc , l0
→bz1x24l0 , andlr→bz1x1r24lr . In the absence of non
linearity (l05lr50), K andDc are scale invariant to yield
z054 andx05(22d)/2. Using these values we find that th
nonlinearities rescales asl0→b(22d)/2l0 and lr

→b(212r2d)lr . Thus the critical dimensions are given b
dc5212r (r.0) anddc52 (r,0) for any nonzerolr .
When r.0, if d,dc5212r, the fixed point of the local
interaction (lr50, l0Þ0, andz1x2450) is unstable and
thus a new fixed point is expected. If 212r<d, the nonlin-
earities become irrelevant and the surface is controlled by
linear equation. Forr,0, if d,2, the SGG fixed point is
stable so thatl0 is relevant rather thanlr ; otherwise the
linear term is relevant. As a result, various phase diagra
depending ond andr appear.

Following a dynamic RG procedure@4,15#, integrating
out fast modes in the momentum shelle2l L<uku<L and
performing the rescalingsr→br, t→bzt, andh→bxh, we
derive the following flow equations for the coefficients, in
one-loop approximation:

dK

dl
5KS z242

DcBd

K3
q~1!

d2413 f ~1!

4d D , ~2!

dDc

dl
5Dc~z22x2d22!, ~3!

dl0

dl
5l0~z1x24!, ~4!

dlr

dl
5lr~z1x241r!, ~5!

where f (a)5] ln q(k)/] ln kuk5a and Bd5Sd /(2p)d, Sd
being the surface area of ad-dimensional unit sphere. Sinc
the diagrams contributing toDc have prefactors proportiona
to k4, they correspond to higher derivatives in the origin
noise spectrum. Note that two scaling relationsz1x54 and
z1x542r, which result from the nonrenormalization o
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l0 andlr in Eqs.~4! and~5!, respectively, are the results o
a one-loop approximation@16#.

Defining the dimensionless parameters U0
2

[(Dcl0
2Bd)/K3, Ur

2[(Dclr
2Bd)/K3, and R5U0 /Ur , we

obtain the flow equations forU0 , Ur , andR:

dU0

dl
5U0F22d

2
1

3~d24!

8d
U0

21
3Ur

8d
~c0U01c1Ur!G ,

~6!

dUr

dl
5UrF22d12r

2
1

3~d24!

8d
U0

21
3Ur

8d
~c0U01c1Ur!G ,

~7!

and dR/dl 52rR, wherec05(d24)22r1d2423r and
c15(d2423r)22r. The equation forR rules out the exis-
tence of any off-axis fixed point in theU0 andUr parameter
space~except forr50). From these equations we find th
there are only two sets of axial fixed points in the two d
mensional (U0 ,Ur) space: for the short range,„U0*

2

54d(d22)/3(d24),Ur*
250…, with x1z54, and for the

long range, „U0*
250,Ur*

254d(d2222r)/3(d24
23r)22r

…, with x1z542r. When Ur50, the SR fixed
point is stable ford,2, where x5(22d)/3 and z5(10
1d)/3, in agreement with the results of Sun, Guo, and Gr
@7#. For d>2, U0 is driven to zero asl →`. The surface
width is thus described by the linear equation yielding
smooth phase except ford52 ~logarithmically rough phase!.
Similarly, from Eq.~7! with U050, the LR fixed point for
d,212r is stable. At this new LR fixed point, the expo
nents are given by

x5~22d2r!/3, z5~101d22r!/3. ~8!

These exponents are determined by Eqs.~3! and~5! in which
Dc andlr are not renormalized in a one-loop approximati
(z22x2d2250 andz1x542r, respectively!.

From these recursion relations, we can discuss the sur
morphologies and the phase transitions for alld’s and r ’s
~see Fig. 1!. Note that Eq.~1! is invariant under theh→
2h and l→2l transforms. Therefore, we consider bo
positive and negative values ofUr and takeU0>0 without
any loss in generality. As shown in Fig. 1, there are vario
(Ur ,U0) phase diagrams depending on the dimensionalitd
and the long-range interaction parameterr. We explain the
phase diagrams in detail.

(i) r.0. The effective nonlinearityUr is dominant over
U0 ; thus the phase in all space (Ur ,U0) except forUr50 is
determined by the long-rangelr term in Eq.~1!. For d,2
2r, the LR fixed point is stable and the surface is the L
rough phase with the positive roughness exponent~we call it
the LR rough phase! given by Eq. ~8!. If Ur50, the SR
rough phase with the positive roughness exponent@x5(2
2d)/3, we call it the SR rough phase# exists such that a
phase transition takes place between two LR rough pha
when the sign ofUr is changed. The critical behavior (Ur

50) follows the SGG nonlinear equation with the SR rou
phase. Ford522r, the surface is the logarithmically roug
phase with a zero roughness exponent~we call it the log
rough phase!. For 22r,d,212r, the phase is controlled
by the LR fixed point and the surface is the LR smooth ph
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due to the negative value of the roughness exponen@x
5(22d2r)/3, we call it the LR smooth phase#. In addition,
the various critical behaviors depending on both value or
and dimensiond are shown in Fig. 1. Phases at the critic
line (Ur50) are SR rough for 22r<d,2, log rough for
d52, and MH smooth for 2,d,212r. Here the MH
smooth phase is defined by the linear equation with a ne
tive roughness exponent@x5(22d)/2, we call it the
Mullins-Herring ~MH! smooth phase#. For d>212r, both
the LR and SR fixed points are irrelevant, so only the M
smooth phase of the linear equation exists. Therefore, v
ous phase transitions take place when the sign ofUr is
changed, except for the regiond>212r where no phase

FIG. 1. Ur (y axis! vs U0 (x axis! phase diagram in (r,d)
space. On thex axis andy axis of the phase diagrams, the solid lin
denote the rough phase and the dotted lines a smooth phase
detailed meanings of the corresponding rough or smooth phas
explained in Table I. Forr.0, the long-range effect makes th
surface less rough than for the case ofr50 ~see the region 22r
<d<2 for r.0).
l

a-

ri-

transition occurs for all values ofUr and U0 . At physical
dimensiond52, it is well known that for the short-rang
interaction (Ur50 andU0Þ0), the SR fixed point~the SGG
equation! is irrelevant, so the surface is logarithmical
rough. However, ifUrÞ0 andr.0 ~that is, for the long-
range interaction!, the LR fixed point is relevant and th
surface becomes LR smooth with the negative expone
given by Eq.~8!. We thus find that the nonzeroUr term with
r.0 can make the surface less rough than the logarith
cally rough phase of the caser50 ~see Table I!.

(ii) r,0. The LR fixed point is irrelevant on the groun
thatU0 is dominant overUr . So the short-range term in Eq
~1! that describes the nonlinearity of the SGG equation
termines the surface behavior in all space (Ur ,U0). If U0

50, it is a LR rough phase ford,212r and a MH rough
phase for 212r<d,2. Here the MH rough phase has th
positive roughness exponent given by the linear equatiox
5(22d)/2. If U0Þ0, the SR fixed point is stable ford,2
and the surface is always short-range rough. Whend>2,
both the SR and LR fixed points are no longer stable for a
value ofU0 , so the phase is governed by the linear equati
Therefore, the phases are logarithmically rough ford52 and
MH smooth for d.2. Unlike the case ofr.0, no phase
transitions take place for all spaces ofUr andU0 .

We have also studied Eq.~1! with a nonconservative
noiseh instead of a conservative noisehc . The nonconser-
vative noise h is a white noise of zero mean wit
^h(r ,t)h(r 8,t8)&52Dd(r2r 8)d(t2t8). There are two sets
of axial fixed points. The phase diagrams in this growi
surfaces are essentially the same as Fig. 1 if the dimens
ality is replaced byd→d22. At the SR fixed point,dc
54, x5(42d)/3, andz5(81d)/3, in agreement with the
equation introduced by Lai and Das Sarma@3#. At the new
LR fixed point withdc5412r, the exponents are given b
x5(42d2r)/3 andz5(81d22r)/3, which are obtained
from the nonrenormalization ofD andlr in a one-loop ap-

he
are
. 1.
TABLE I. Various phases depend on bothr andd. These phases correspond to the diagrams in Fig
There are six different phases: LR rough ifx5(22d2r)/3 is positive, LR smooth ifx5(22d2r)/3 is
negative, SR rough ifx5(22d)/3 is positive, MH rough ifx5(22d)/2 is positive, MH smooth ifx5(2
2d)/2 is negative, and log rough ifx50.

r d Phase ofU0 (x axis! Phase ofUr (y axis!

r,0 d,212r SR rough LR rough

212r<d,2 SR rough MH rough

d52 log rough log rough

d.2 MH smooth MH smooth

r.0 d,22r SR rough LR rough

d522r SR rough log rough

22r,d,2 SR rough

d52 log rough LR smooth

2,d,212r MH smooth

d>212r MH smooth MH smooth
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proximation. Experimental results for the growth of Fe film
on Fe~001! using a high-resolution low-energy electron d
fraction technique@17# show x50.7960.05 andb5x/z
50.2260.02 for d52. This value belongs to the regiond
,212r (r,0) in Table I so the surface is LR rough wit
U050. If x,2/3 andb,2/5 for d52, the positive value of
r can be adjusted to fit the experimental data. At this po
it is unclear whether the experimental system really p
sesses the long-range interaction such as that of Eq.~1!. We
thus strongly encourage the examination of other syst
with long-range interactions.

In summary, we have studied the conserved KPZ equa
in the presence of long-range interactions. For positive v
. A

o

t,
-

s

n
l-

ues ofr, the long-range nonlinear term makes the surfa
less rough and produces different values of the expon
from those of the SGG equation. In particular, at physi
dimensiond52, the surface is smooth forr.0, while the
surface is logarithmically rough forr50. However, the
long-range nonlinear term becomes irrelevant for nega
values ofr and the surface is controlled by the SGG fix
points.
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