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Effect of long-range interactions in the conserved Kardar-Parisi-Zhang equation
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The conserved Kardar-Parisi-Zhang equation in the presence of long-range nonlinear interactions is studied
by the dynamic renormalization-group method. The long-range effect produces new fixed points with continu-
ously varying exponents and gives distinct phase transitions, depending on both the long-range interaction
strength and the substrate dimensibrThe long-range interaction makes the surface width less rough than that
of the short-range interaction. In particular, the surface becomes a smooth one with a negative roughness
exponent at the physical dimensidr=2. [S1063-651X98)02011-X]

PACS numbegps): 05.40:+j, 68.35.Fx, 05.70.Ln

For the past decade the kinetic roughening of surfaces haation of the surface currents. Therefore, it would be inter-
attracted much intereft]. The recent studies concentrate on esting to examine how the long-range interaction in the con-
measuring the scaling exponents that characterize theerved growth equation affects the roughness of the surface.
asymptotic behavior of the surface roughness on a largkauritsen[12] introduced a growth kernel equatid@KE)
length scale and in a long time limit and finding the con-with a generalized conservation law described by an integral
tinuum equations. The problem of a rough surface not only ikernel. It describes the nonlocal interactions with the KPZ
of practical importance in crystal growth, but also is relatedequation. Here we extend the phenomenological equation of
to the nonequilibrium statistical physics. Many computerMukherji and Bhattacharjee to the conserved growth equa-
simulations and theoretical approaches have been applied ii®n
the studies of the Kardar-Parisi-Zhafi§PZ) [2] equation
and discrete molecular-beam-epitaxy growth models with ~ dh(r,t)
various kinds of nois¢3—7]. Among them, the Eden model at
[8], ballistic depositior{9], and the restricted solid-on-solid
growth model[10] have been identified as a universality XVh(r+r',t)-Vh(r—r't), «h)
class corresponding to the KPZ equation for the coarse-
grained height variablé(r,t), which describes the surface whereh(r,t), assumed to be a single-valued function of po-
as a function of coordinate and timet. The KPZ equation sitionr, describes the height of the surface. The paranteter
has a nonlinear term of short range describing the laterdb a constant and. is a conserved random noise of zero
growth. However, there is poor agreement between the KPIean with{ 7.(r,t) n.(r',t’)y=—2DV?8(r—r’)s(t—t").
equation and the experimental data. Since the right-hand side of Eql) can be written as the

Recently, Mukherji and Bhattacharjg@1] proposed a divergence of a current, the total volume under the surface is
phenomenological equation in the presence of long-range irconserved. The kerneg}(r) includes long-range part that is
teractions to describe the kinetic roughening of the surfaceonnected to the underlying interactions. As in R&l], we
growth. The long-range effect of the nonlinear term in thetaked(r) to have a short-rang&R) partiy6(r) and a long-
KPZ equation is introduced by coupling the gradients at twarange(LR) part ~r?~¢ or more precisely, in Fourier space,
different points. The roughness of the surface is found tad(k) =Ao+\ k™. Both Eq.(1) and the GKE have the con-
depend on the long-range nature and several distinct phaservation law and the long-range interaction in common. The
transitions are observed. The long-range interactions decagKE contains the KPZ equation with the generalized kernel.
ing slower than ¥ (d is the substrate dimensipmakes However, Eq(1) has the nonlinear term with the long-range
the KPZ fixed point with the short-range interaction be un-interaction as coupling the gradients at two different points.
stable. The surface then has the long-range roughness withtakes into account with both the short-range part and the
different exponents depending on the power law of the longlong-range part.
range interactions. Other interactions decaying faster than The surface widthWV(L,t) can be described by the dy-
1/r9 are suppressed by the local interaction yielding the ornamical scaling formW(L,t)=LXF(t/L?), whereL, y, z,
dinary KPZ universality class. andF are the system size, the roughness exponent, the dy-

In the kinetic roughening problems, the universality classnamic exponent, and the scaling function, respectively. For
of the dynamic systems depends on the symmetry of th&,=A,=0, it becomes a linear equation evolving with the
order parameter, the dimensionality of space, and the consetenservative surface diffusion, where the roughness expo-

nenty is (2—d)/2 and the dynamic exponent4. For the
physical dimensiord=2, y=0; thus the surface width is
*Electronic address: imkim@kucc08.korea.ac.kr logarithmically rough as a function of system slze Above
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two dimensions the linear equation with the conservative\, and\ , in Egs.(4) and(5), respectively, are the results of
noise produces a negative roughness exponent, implying & one-loop approximatiofi6].

smooth surfacgl3]. ForA ,=0 and\y#0, Eq.(1) becomes Defining the dimensionless parameters UO
the conserved KPZ equatlon Wlth a conservative noise=(D\ Bd)/K3 UZ—(D A\ Bd)/K3 and R=U,/U,,,
[called the Sun-Guo-GranSGG equation[7,14]], where  obtain the flow equations fddy, U, andR:

the average height remains constant. For this local conserved

growth equation, the dynamic renormalization-grofiG) dUg 2—d 3(d—4) , 3Up

calculation showsy=(2-d)/3 and z=(10+d)/3 [7]. For a7 Yo 5+ —gg Yot gg (Clotcily) |,
d=2, the nonlinear term is irrelevant and then the exponents (6)
are given by the linear theory with bokh and\ , being zero

in Eq. (1). Here we show that a long-range pai,¢0) du, 2— d+2p 3(d—4) 3U,

gives a new fixed point with continuously varying exponents™q, ~ “» 2 3d U 3d (C0U0+C1U )|
and thus yields distinct phase transitions depending on both 7

the parametep of the long-range interactions and the sub-
strate dimensiord. This nonlocal\, term with positivep anddR/d/=—pR, wherecy=(d—4)2"?+d—4—-3p and
makes the surface less rough than in the cask,ef0. In  ¢;=(d—4-3p)27". The equation foR rules out the exis-
particular, at the physical dimensiah=2, the surface be- tence of any off-axis fixed point in thé, andU , parameter
comes a smooth phase with a negative roughness exponespgace(except forp=0). From these equations we find that
rather than a logarithmically rough phase as in the SGG cas#here are only two sets of axial fixed points in the two di-
Under the change of scale, the parameters in(Bgnake  mensional U,,U,) space: for the short range(U 2
the changes K—b* *K, D—b#7972D;, No  =4d(d—2)/3(d—4),U*2=0), with y+z=4, and for the
—bZTX 4\, and)\p—>b”X*P*4)\p In the absence of non- |ong range, (U*2 0U*2=4d(d—2-2p)/3(d—4
linearity (\o=A,=0), K. andD, are scale invariant to yield —35)2-r), with y+z=4—p. WhenU =0, the SR fixed
20=4 andyo=(2—d)/2. Using ‘these values we find that the point is stable ford<2, where y=(2-d)/3 and z=(10
nonlinearities rescales asho—b® 2\, and X\,  4d)/3, in agreement with the results of Sun, Guo, and Grant
—b@*20=d)\ . Thus the critical dimensions are given by [7]. For d=2, U, is driven to zero ag’—x. The surface
dc=2+2p (p>0) andd.=2 (p<O0) for any nonzero,.  width is thus described by the linear equation yielding a
When p>0, if d<d.=2+2p, the fixed point of the local smooth phase except fde=2 (logarithmically rough phase
interaction § ,=0, Ao#0, andz+ y—4=0) is unstable and  Similarly, from Eq.(7) with Uo=0, the LR fixed point for
thus a new fixed point is expected. Ifi2p=<d, the nonlin-  d<2+2p is stable. At this new LR fixed point, the expo-
earities become irrelevant and the surface is controlled by thgents are given by
linear equation. Fop<O0, if d<2, the SGG fixed point is

stable so thab, is relevant rather than ,; otherwise the x=(2—-d—p)/3, z=(10+d—2p)/3. (8)
linear term is relevant. As a result, varlous phase diagrams
depending ord andp appear. These exponents are determined by Egsand(5) in which

Following a dynamic RG procedurigt,15], integrating Dc and\, are not renormalized in a one- Iolop approximation
out fast modes in the momentum shell”A<|k|<A and (Z—2X—d—2:0 andz+ y=4-p, respectively.

performing the rescalings—br, t—b%, andh—bXh, we From these recursion relations, we can discuss the surface
derive the following flow equations for the coefficients, in amorphologies and the phase transitions forcif and p's
one- |00p approx|mat|on (See F|g J_ Note that Eq (1) is invariant under theh—

—h and A— —\ transforms. Therefore, we consider both
dK DBy d—4+3f(1) positive and negative values bf, and takeU,=0 without
W:K 24— — 24 , (2) anylossin gener_allty As shown !n Fig. 1, the;re are vanous

K (U,,Up) phase diagrams depending on the dimensionellity
and the long-range interaction parameieiWe explain the
dD, phase diagrams in detail.
V:DC(Z_ZX_d_Z)’ 3 (i) p>0. The effective nonlinearity), is dominant over
Uyg; thus the phase in all spac¥ (,U,) except forU ,=0 is
d\g determined by the Io_ng-_rangep term in Eq.(1). For_d<2
d—/,z)\o(z+)(—4), (4) —p, the LR flx_ed point is _stable and the surface is thfe LR
} rough phase with the positive roughness expoigestcall it
q the LR rough phasegiven by Eq.(8). If U,=0, the SR
Ao N (24 x—4+p), 5) rough phase wnh the positive roughnes; exporgnt (2
d/ P —d)/3, we call it the SR rough phakexists such that a

phase transition takes place between two LR rough phases
where f(a)=2aIn 9(k)/dInk|._, and B4=S4/(2m)% Sy  when the sign ol, is changed. The critical behaviolJ(,
being the surface area ofdadimensional unit sphere. Since =0) follows the SGG nonlinear equation with the SR rough
the diagrams contributing © . have prefactors proportional phase. Fod=2—p, the surface is the logarithmically rough
to k*, they correspond to higher derivatives in the originalphase with a zero roughness exponéme call it the log
noise spectrum. Note that two scaling relatiaaisy=4 and  rough phaske For 2—p<d<2+2p, the phase is controlled
z+ x=4—p, which result from the nonrenormalization of by the LR fixed point and the surface is the LR smooth phase
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e transition occurs for all values df , and U,. At physical
d yMH smooth o A=242p . . oo p 0
Ur ' MH smooth Loemeo- dimensiond=2, it is well known that for the short-range
Fom--- Uo 'MHsmooth.~ | LR smooth interaction U ,=0 andU,# 0), the SR fixed pointthe SGG
1MH smooth - equation is irrelevant, so the surface is logarithmically
| LR smooth rough. However, ifU,#0 andp>0 (that is, for the long-
|Logrough 'LR smooth range interaction the LR fixed point is relevant and the
2 |L " ] surface becomes LR smooth with the negative exponents
0g rou ! ! . . .
grovet . LR smooth | LR smooth given by Eq.(8). We thus find that the nonzetd, term with
SR rough ELRsmooth p>0 can make the surface less rough than the logarithmi-
cally rough phase of the cage=0 (see Table)l
SRrough .~ SR rough LR rough (ii) p<0. The LR fixed point is irrelevant on the ground
g }7 LR rough d=2-p thatU, is dominant oved,,. So the short-range term in Eq.
SR rough (1) that describes the nonlinearity of the SGG equation de-
termines the surface behavior in all spat¢g,(Uo). If Uy

0 P =0, it is a LR rough phase fail<2+2p and a MH rough
FIG. 1. U, (y axis vs U, (x axi9 phase diagram ing|d) phase for 2-2p<d<2. Here the MH rough phase has the

space. On the axis andy axis of the phase diagrams, the solid lines POSsitive roughness exponent given by the linear equation
denote the rough phase and the dotted lines a smooth phase. TRe(2—d)/2. If Uy#0, the SR fixed point is stable far<2
detailed meanings of the corresponding rough or smooth phase agnd the surface is always short-range rough. Wher2,
explained in Table I. Fop>0, the long-range effect makes the both the SR and LR fixed points are no longer stable for any
surface less rough than for the casepsfO (see the region 2p  value ofU, so the phase is governed by the linear equation.
<d=<2 for p>0). Therefore, the phases are logarithmically roughder2 and

MH smooth ford>2. Unlike the case op>0, no phase
due to the negative value of the roughness expomgnt transitions take place for all spacesldf andU,.
=(2—d—p)/3, we call it the LR smooth phakdn addition, We have also studied Eql) with a nonconservative
the various critical behaviors depending on both valug of noise » instead of a conservative noisg . The nonconser-
and dimensiord are shown in Fig. 1. Phases at the critical vative noise n is a white noise of zero mean with
line (U,=0) are SR rough for 2 p<d<2, log rough for  (7(r,t)(r',t"))=2D8(r—r’)(t—t"). There are two sets
d=2, and MH smooth for 2d<2+2p. Here the MH of axial fixed points. The phase diagrams in this growing
smooth phase is defined by the linear equation with a negasurfaces are essentially the same as Fig. 1 if the dimension-
tive roughness exponenty=(2—d)/2, we call it the ality is replaced byd—d—2. At the SR fixed pointd.
Mullins-Herring (MH) smooth phase For d=2+2p, both =4, x=(4-d)/3, andz=(8+d)/3, in agreement with the
the LR and SR fixed points are irrelevant, so only the MHequation introduced by Lai and Das Sarfi3d. At the new
smooth phase of the linear equation exists. Therefore, variR fixed point withd.=4+ 2p, the exponents are given by
ous phase transitions take place when the sigrgfis  xy=(4—d—p)/3 andz=(8+d—2p)/3, which are obtained
changed, except for the regiaf=2+2p where no phase from the nonrenormalization dd and\ , in a one-loop ap-

TABLE |. Various phases depend on bgihandd. These phases correspond to the diagrams in Fig. 1.
There are six different phases: LR roughyif (2—d—p)/3 is positive, LR smooth ify=(2—d—p)/3 is
negative, SR rough if=(2—d)/3 is positive, MH rough ify=(2—d)/2 is positive, MH smooth ify=(2
—d)/2 is negative, and log rough jf=0.

p d Phase olU, (x axis Phase olJ, (y axis)
p<0 d<2+2p SR rough LR rough
2+2p=d<2 SR rough MH rough
d=2 log rough log rough
d>2 MH smooth MH smooth
p>0 d<2-p SR rough LR rough
d=2-p SR rough log rough
2—p<d<2 SR rough
d=2 log rough LR smooth
2<d<2+2p MH smooth

d=2+2p MH smooth MH smooth
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proximation. Experimental results for the growth of Fe filmsues ofp, the long-range nonlinear term makes the surface
on F€001) using a high-resolution low-energy electron dif- less rough and produces different values of the exponents
fraction technique[17] show xy=0.79+-0.05 andB3=yx/z  from those of the SGG equation. In particular, at physical
=0.22+0.02 ford=2. This value belongs to the regiah  dimensiond=2, the surface is smooth fgr>0, while the
<2+2p (p<0) in Table I so the surface is LR rough with surface is logarithmically rough fop=0. However, the
Uo=0. If y<2/3 andB<2/5 for d=2, the positive value of long-range nonlinear term becomes irrelevant for negative
p can be adjusted to fit the experimental data. At this pointvalues ofp and the surface is controlled by the SGG fixed
it is unclear whether the experimental system really posPOINts.

sesses the long-range interaction such as that of BgWe This work was supported in part by the Ministry of Edu-
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